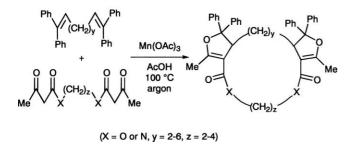


## Manganese(III)-based intramolecular macrocyclization of 3,3-diphenyl-2-propenyloxyoligomethylene 3-oxobutanoates


Shunsuke Jogo,<sup>a</sup> Hiroshi Nishino,<sup>b,\*</sup> Mikio Yasutake<sup>a</sup> and Teruo Shinmyozu<sup>a</sup>

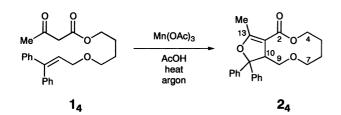
<sup>a</sup>Institute for Fundamental Research of Organic Chemistry, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan <sup>b</sup>Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan

Received 21 September 2002; revised 11 October 2002; accepted 15 October 2002

Abstract—The reaction of 3,3-diphenyl-2-propenyloxytetramethylene 3-oxobutanoate  $(1_4)$  with manganese(III) acetate dihydrate in boiling acetic acid caused the oxidative intramolecular radical cyclization to produce 13-methyl-11,11-diphenyl-3,8,12-trioxabicyclo[8.3.0]tridec-13-en-2-one  $(2_4)$  in 94% yield. A similar oxidation of the 3,3-diphenyl-2-propenyloxyoligomethylene 3-oxobutanoates  $(1_n: n=2, 3, 6, 8)$  gave the corresponding macrolides  $2_n$  (n=2, 3, 6, 8) in moderate to good yields. A 17-membered crown ether-type macrolide  $2_{11}$  was also obtained in 80% yield by the intramolacular radical cyclization of the oxaethylene-tethered 3-oxobutanoate  $(1_{11})$ . The structure of the macrolides  $2_n$  (n=2, 3, 4, 6, 11) has been corroborated by an X-ray crystal structure analysis. © 2002 Elsevier Science Ltd. All rights reserved.

Recently, we reported the straightforward access to functionalized large ring compounds which were obtained by the oxidation of oligomethylene di(3oxobutanoate)s or N,N'-oligomethylenebis(acetoacetamide)s with manganese(III) acetate in the presence of terminal alkadienes.<sup>1,2</sup> In the method, we obtained from 11- to 22-membered macrodiolides or macrodiamides, each possessing two fused dihydrofuran rings, in good yields. It was postulated that the macrocyclization took place by the intermolecular mono-cyclization of the terminal alkadiene with the manganese(III)-enolate complex of 1,3-dicarbonyl moiety, followed by the intramolecular dihydrofuranation according to electron donor-acceptor like complex formation of a carbon-carbon double bond (donor) with the manganese(III)–enolate complex (acceptor) (Scheme 1).<sup>3</sup>




Scheme 1.

Although many ionic macrocyclizations promoted by metal cations are known,<sup>4</sup> the oxidative radical macrocyclization was apparently characteristic of manganese(III)-based oxidation chemistry. In connection with the inter- and intramolecular large ring formations, we were interested in the ability of the manganese(III)based intramolecular macrocyclization since five-, six-, and seven-membered cyclic compounds could be formed by the manganese(III)-5 or other transition metal-based intramolecular cyclization.<sup>6</sup> In order to explore the intramolecular macrocyclization, 3,3diphenyl-2-propenyloxytetramethylene 3-oxobutanoate  $(1_4)$  was prepared and allowed to react with manganese(III) acetate. Surprisingly, the reaction afforded the corresponding 10-membered cyclic compound which would be difficult to form by the oxidative radical cyclization. This fact prompted us to scrutinize the manganese(III)-based macrocyclization.

3-Oxobutanoate ( $1_4$ , 0.5 mmol) prepared in four steps from benzophenone was oxidized with a stoichiometric amount of manganese(III) acetate (1.0 mmol) in acetic acid (250 mL) at 100°C under an argon atmosphere to give the desired bicyclic compound  $2_4$  in 35% yield along with a small amount of unchanged  $1_4$  (15%) (Scheme 2 and Table 1, entry 1). Although the stoichiometry of the intramolecular macrocyclization was  $1_4$ :Mn(OAc)<sub>3</sub>=1:2, the oxidative macrocyclization at 100°C was not efficient because of the competitive electron-transfer oxidation of the carbon–carbon double bond of  $1_4$  and the oxidation of the solvent (entry

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02282-7

<sup>\*</sup> Corresponding author. Tel.: +81-96-342-3374; fax: +81-96-342-3374; e-mail: nishino@aster.sci.kumamoto-u.ac.jp



Scheme 2.

Table 1. Manganese(III)-based oxidation of 3,3-diphenyl-2-propenyloxytetramethylene 3-oxobutanoate  $(1_4)^a$ 

| Entry | Molar ratio <sup>b</sup> | Temperature<br>(°C) | Time (min) | Yield of <b>2</b> <sub>4</sub><br>(%) <sup>c</sup> |
|-------|--------------------------|---------------------|------------|----------------------------------------------------|
| 1     | 1:2                      | 100                 | 120        | 35                                                 |
| 2     | 1:4                      | 100                 | 120        | 47                                                 |
| 3     | 1:10                     | 100                 | 60         | 75                                                 |
| 4     | 1:4                      | 120                 | 15         | 69                                                 |
| 5     | 1:5                      | 120                 | 15         | 94                                                 |

<sup>a</sup> The reaction of  $\mathbf{1}_4$  (0.5 mmol) with manganese(III) acetate dihydrate was carried out in acetic acid (250 mL) under an argon atmosphere. <sup>b</sup> 1<sub>4</sub>: manganese(III) acetate.

<sup>c</sup> Isolated yield based on the amount of 1<sub>4</sub> used.

1).<sup>7</sup> The use of an excess amount of manganese(III) acetate at 100°C led to increase the yield of 24, however, the concomitant oxidation of the solvent and the competitive electron-transfer oxidation of  $1_4$  still occurred (entries 2 and 3). In general, to avoid the electron-transfer oxidation of carbon-carbon double bond during the manganese(III) oxidation, it is known that the reaction is carried out at the reflux temperature.<sup>8</sup> In addition, the oxidation of the solvent is also controlled since the reaction time shortens at the reflux temperature. Therefore, we adopted the reaction conditions and the best yield of  $2_4$  (94% yield) was achieved (entry 5). The peaks in the <sup>1</sup>H NMR spectrum of  $2_4$ were well split<sup>9</sup> and the correlation of the HC COSY spectrum showed a good agreement. That is, the peak at  $\delta$  4.34 showed a ddg splitting pattern assigned to the H-10 proton coupled with the H-9 methylene protons (J=11.71 and 4.96 Hz) and methyl protons (J=0.80)Hz). A triplet at  $\delta$  3.12 (1H, J=11.71 Hz) and double doublets at  $\delta$  2.90 (1H, J = 11.71 and 4.96 Hz) were due to the H-9 methylene protons. A peak deshielded by the carbonyl group appeared at  $\delta$  4.83 (1H, ddd, J=10.91, 5.28, and 2.94 Hz) and assigned to one of the methylene protons of H-4. The double triplets at  $\delta$  3.79 (1H, J=10.91 and 1.70 Hz) were due to the other methylene proton of H-4. The H-7 methylene proton peaks also turned up at  $\delta$  3.88 (1H, ddd, J = 11.75, 8.38, and 2.94 Hz) and  $\delta$  3.40 (1H, ddd, J = 8.38, 4.72, and 2.40 Hz), along with the four methylene protons of H-5 and H-6 as four multiplets at  $\delta$  2.02, 1.78, 1.60, and 1.50. The <sup>13</sup>C NMR spectrum showed a lactone carbonyl carbon and the characteristic  $sp^2$  carbons of dihydrofuran.

Although the result of the FAB mass spectrum and elemental analysis of  $2_4$  was also supported the structure shown in Scheme 2, in order to corroborate the

exact structure, a single crystal of  $2_4$  was successfully grown from hexane and measured by X-rays. As a result, the structure of  $2_4$  was finally characterized as 13methyl-11,11-diphenyl-3,8,12-trioxabicyclo[8.3.0]tridec-13-en-2-one (Fig. 1).<sup>10</sup>

The manganese(III)-based oxidative intramolecular radical cyclization deserves attention since it is known that the cyclodecane ring system is kinetically and thermodynamically the most difficult to prepare by intramolecular cyclization.<sup>11</sup> We next investigated a similar reaction of other 3,3-diphenyl-2-propenyloxyoligomethylene 3-oxobutanoates  $(1_n: n=2, 3, 6, 8)$  and obtained the corresponding macrocyclic compounds  $2_n$ (n=2, 3, 6, 8) in moderate to good yields (Scheme 3, Table 2). In addition, 15,15-diphenyl-3,6,9,12-tetraoxa-14-pentadecenyl 3-oxobutanoate  $(1_{11})$  was also prepared and oxidized under similar reaction conditions to give the 17-membered crown ether-type macrolide  $2_{11}$  in 80% yield.

The structure of the macrolides  $2_n$  was determined by spectroscopic analysis and X-ray crystallography except for  $2_8$ . The crystal structure of the 17-membered macrolide  $2_{11}$  deserves comment. The maximum cavity size observed was 7.319 A (between C2 and C10 in Fig. 2) in the solid state and a water molecule has been trapped in the cavity by the hydrogen-bonding between the ether oxygens (O4 and O6 in Fig. 2).<sup>12,13</sup> This reminds us of the inclusion ability of a crown ether.

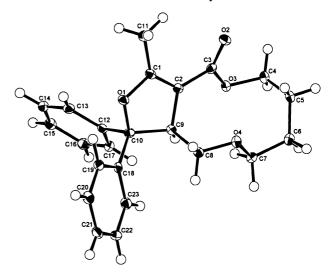
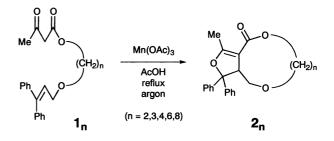




Figure 1. ORTEP drawing of 2<sub>4</sub>.



Scheme 3.

Table 2. Manganese(III)-based oxidation of 3,3-diphenyl-2-propenyloxyoligomethylene 3-oxobutanoate  $1_n^a$ 

| Entry | Substrate 1 <sub>n</sub>     | Time (min) | Yield of <b>2</b> <sub><i>n</i></sub> (%) <sup>b</sup> | Ring size <sup>c</sup> |
|-------|------------------------------|------------|--------------------------------------------------------|------------------------|
| 1     | 12                           | 15         | <b>2</b> <sub>2</sub> (55)                             | 8                      |
| 2     | 13                           | 10         | <b>2</b> <sub>3</sub> (82)                             | 9                      |
| 3     | 14                           | 15         | <b>2</b> <sub>4</sub> (94)                             | 10                     |
| 4     | 1 <sub>6</sub>               | 15         | <b>2</b> <sub>6</sub> (51)                             | 12                     |
| 5     | 18                           | 15         | <b>2</b> <sub>8</sub> (51)                             | 14                     |
| 6     | 1 <sub>11</sub> <sup>d</sup> | 15         | <b>2</b> <sub>11</sub> (80)                            | 17                     |

<sup>a</sup> The reaction of  $\mathbf{1}_{n}$  (0.5 mmol) with manganese(III) acetate dihydrate was carried out in boiling acetic acid (250 mL) under an argon atmosphere at the molar ratio of  $\mathbf{1}_{n}$ :manganese(III) acetate = 1:5.

<sup>b</sup> Isolated yield based on the amount of  $\mathbf{1}_n$  used.

<sup>c</sup> The ring size revealed the biggest ring in the bicyclic system.

<sup>d</sup> 15,15-Diphenyl-3,6,9,12-tetraoxa-14-pentadecenyl 3-oxo-butanoate.

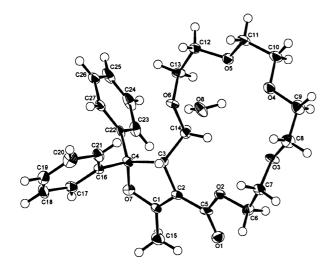
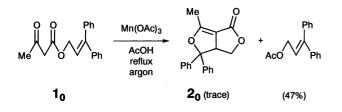




Figure 2. ORTEP drawing of  $2_{11}$ ·H<sub>2</sub>O.

Actually, we examined the extraction ability of  $2_{11}$  using alkaline picrates in two-phase system of deuteriochloroform and water at room temperature. As a result, sodium picrate in water was extracted into the organic layer containing  $2_{11}$ .<sup>4a</sup>

In order to synthesize the dioxabicyclo[3.3.0]octenone as the smallest ring size in the reaction, 3,3-diphenyl-2propenyl 3-oxobutanoate  $(1_0)$  was prepared in three steps from 3-chloro-1,1-diphenyl-1-propene and allowed to react with manganese(III) acetate (Scheme 4). It was strange, but only a trace amount of the corresponding bicyclic compound  $2_0$  was formed together with 3,3-diphenyl-2-propenyl acetate in 47%



yield, nevertheless, the 5-exo-trig cyclization was favored in the radical cyclization.<sup>11b,14</sup> Probably, the electron-transfer oxidation of the carbon–carbon double bond of  $1_0$  might be favored because of the electronic reason of the allyl substituent.<sup>15</sup>

In conclusion, we have demonstrated the unique manganese(III)-based oxidative radical macrocyclization of 3,3-diphenyl-2-propenyloxyolygomethylene 3-oxobutanoates and their derivatives. Efforts are currently underway in our laboratories to investigate the limitation of the manganese(III)-based radical large ring formation.

## Acknowledgements

We thank Professor Emeritus Kazu Kurosawa, Kumamoto University, Japan, for his helpful discussions and suggestions. This research was supported by Grant-in-Aid for Scientific Research on Priority Areas (A) 'Exploitation of Multi-Element Cyclic Molecules' No. 13029088 and No. 14044078, from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and also by a Grant-in-Aid for Scientific Research, No. 13640539, from the Japan Society for the Promotion of Science.

## References

- Yoshinaga, T.; Nishino, H.; Kurosawa, K. Tetrahedron Lett. 1998, 39, 9197–9200.
- Chowdhury, F. A.; Nishino, H.; Kurosawa, K. Heterocycl. Commun. 1999, 5, 111–112.
- Nishino, H.; Nguyen, V.-H.; Yoshinaga, S.; Kurosawa, K. J. Org. Chem. 1996, 61, 8264–8271.
- (a) Gokel, G. W. Crown Ethers and Cryptands; The Royal Society of Chemistry: Cambridge, 1994; (b) Gutsche, C. D. Calixarenes Revisited; The Royal Society of Chemistry: Cambridge, 1998; (c) Shorthill, B. J.; Granucci, R. G.; Powell, D. R.; Glass, T. E. J. Org. Chem. 2002, 67, 904–909; (d) Pigge, F. C.; Ghasedi, F.; Rath, N. P. J. Org. Chem. 2002, 67, 4547–4552.
- (a) Snider, B. B.; Smith, R. B. Tetrahedron 2002, 58, 25–34; (b) Snider, B. B. Chem. Rev. 1996, 96, 339–363; (c) Merritt, J. E.; Sasson, M.; Kates, S. A.; Snider, B. B. Tetrahedron Lett. 1988, 29, 5209–5212; (d) Snider, B. B.; Merritt, J. E. Tetrahedron 1991, 41, 8663–8678; (e) Citterio, A.; Sebastiano, R.; Marion, A. J. Org. Chem. 1991, 56, 5328–5335; (f) Yang, D.; Ye, X.-Y.; Xu, M.; Pang, K.-W.; Cheung, K.-K. J. Am. Chem. Soc. 2000, 122, 1658–1663; (g) Cerreti, A.; D'Annibale, A.; Trogolo, C.; Umani, F. Tetrahedron Lett. 2000, 41, 3261–3264; (h) Davies, D. T.; Kapur, N.; Parsons, A. F. Tetrahedron 2000, 56, 3941–3949; (i) Wu, Y.-L.; Chuang, C.-P.; Lin, P.-Y. Tetrahedron 2000, 56, 6209–6217.
- (a) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry; Pergamon: Amsterdam, 2000; (b) Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon: Oxford, 1986; (c) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94,

519–564; (d) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. **1991**, *91*, 1237–1286.

- (a) Qian, C.-Y.; Yamada, T.; Nishino, H.; Kurosawa, K. Bull. Chem. Soc. Jpn. 1992, 65, 1371–1378; (b) Yamada, T.; Iwahara, Y.; Nishino, H.; Kurosawa, K. J. Chem. Soc., Perkin Trans. 1 1993, 609–616.
- (a) Bush, J. B., Jr.; Finkbeiner, H. J. Am. Chem. Soc. 1968, 90, 5903–5905; (b) Heiba, E. I.; Dessau, R. M.; Koehl, W. J., Jr. J. Am. Chem. Soc. 1968, 90, 5905–5906; (c) Fristad, W. E.; Peterson, J. R. J. Org. Chem. 1985, 50, 10–18; (d) Ito, N.; Nishino, H.; Kurosawa, K. Bull. Chem. Soc. Jpn. 1983, 56, 3527–3528; (e) Fristad, W. E.; Hershberger, S. S. J. Org. Chem. 1985, 50, 1026–1031; (f) Nishino, H. Bull. Chem. Soc. Jpn. 1985, 58, 1922–1927; (g) Nguyen, V.-H.; Nishino, H.; Kurosawa, K. Synthesis 1997, 899–908.
- 9. 13 Methyl 11,11 diphenyl 3,8,12 trioxabicyclo[8.3.0]tridec-13-en-2-one ( $2_4$ ):  $R_f = 0.11$  (chloroform); mp 154.5-155.0°C (from hexane); IR (KBr) v 1697 (C=O), 1654 (C=C); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.52–7.49 (2H, m, arom H), 7.33-7.24 (8H, m, arom H), 4.83 (1H, ddd, J = 10.91, 5.28, 2.94 Hz, H-4a), 4.34 (1H, ddq, J = 11.71,4.96, 0.80 Hz, H-10), 3.88 (1H, ddd, J = 11.75, 8.38, 2.94 Hz, H-7a), 3.79 (1H, dt, J=10.91, 1.70 Hz, H-4b), 3.40(1H, ddd, J=8.38, 4.72, 2.40 Hz, H-7b), 3.12 (1H, t, t)J=11.71 Hz, H-9a), 2.90 (1H, dd, J=11.71, 4.96 Hz, H-9b), 2.28 (3H, d, J=0.80 Hz,  $CH_3$ ), 2.02 (1H, m, H-5a), 1.78 (1H, m, H-6a), 1.60 (1H, m, H-6b), 1.50 (1H, m, H-5b); <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>) δ 166.25 (C=O), 165.98 (C-13), 144.34, 139.72 (arom C), 128.18 (2C), 127.99 (2C), 127.94, 127.22, 126.20 (2C), 126.15 (2C) (arom CH), 108.01 (C-1), 92.99 (C-11), 71.78 (C-9), 67.28 (C-7), 65.01 (C-4), 44.36 (C-10), 27.95 (C-6), 24.31 (C-5), 13.96 (CH<sub>3</sub>); FAB HR MS found m/z 365.1753, calcd for C<sub>23</sub>H<sub>25</sub>O<sub>4</sub> M+1, 365.1753. Anal. calcd for C<sub>23</sub>H<sub>24</sub>O<sub>4</sub>: C, 75.80; H, 6.64. Found: C, 75.60; H, 6.80%.
- 10. X-Ray crystallographic data of **2**<sub>4</sub>: empirical formula  $C_{23}H_{24}O_4$ ; formula weight 364.44; colorless prisms; crystal dimensions  $0.20 \times 0.30 \times 0.50$  mm; monoclinic; space group  $P2_1/c$  (#14); a=12.4571(4), b=11.1574(4), c=13.9385(4) Å,  $\beta=107.8410(7)^\circ$ , V=1844.13(10) Å<sup>3</sup>, Z=4;  $D_{calcd}=1.313$  g/cm<sup>3</sup>; F(000)=776.00;  $\mu$ (MoK $\alpha$ )=0.89 cm<sup>-1</sup>;  $2\theta_{max}=55.0^\circ$ ; No. of reflections measured 17268;

no. of observations (I>3.00 $\sigma$ (I)) 2383; no. of variables 341; reflection/parameter ratio was 6.99; R=0.030;  $R_{\rm w}$ = 0.028; GOF=1.07.

- (a) Casadei, M. A.; Galli, C.; Mandolini, L. J. Am. Chem. Soc. 1984, 106, 1051–1056; (b) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734–736.
- 12. 20-Methyl-18,18-diphenyl-3,6,9,12,15,19-hexaoxabicyclo-[15.3.0]icos-20-en-2-one  $(2_{11})$ :  $R_f = 0.19$  (chloroform); mp 113.6-114.0°C (from ethanol); IR (KBr) v 1694 (C=O), 1645 (-O-C=); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.64–7.59 (2H, m, arom H), 7.36-7.15 (8H, m, arom H), 4.39 (1H, dt, J = 12.19, 4.42 Hz,  $-H_bCH_a$ -), 4.13 (1H, dt, J = 12.19, 4.42 Hz,  $-H_aC\underline{H}_b$ -), 4.08 (1H, dq, J=8.51, 1.30 Hz, H-17), 3.73–3.56 (11H, m, -O-C $H_2$ -O-), 3.38 (2H, t, J=4.38 Hz,  $CH_2$ ), 3.09 (1H, dd, J=9.49, 8.51 Hz, H-16), 2.82 (1H, dt, J = 11.81, 4.38 Hz,  $-H_dCH_c$ -), 2.65 (1H, dt, J=11.81, 4.38 Hz,  $-H_cCH_d$ -), 2.34 (3H, d, J=1.30 Hz, CH<sub>3</sub>); <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  168.36 (C=O), 165.42 (C-20), 144.90, 140.50 (arom C), 127.97 (2C), 127.61 (2C), 127.17, 127.04, 126.88 (2C), 126.42 (2C) (arom CH), 102.96 (C-1), 94.72 (C-18), 70.58 (2C), 70.51, 70.49, 70.14, 69.88, 69.39, 69.23 (-O-CH<sub>2</sub>-O-), 62.65 (-O-CH<sub>2</sub>-O-), 51.35 (C-17), 14.39 (-CH<sub>3</sub>); FAB HR MS found m/z 469.2252, calcd for C<sub>27</sub>H<sub>33</sub>O<sub>7</sub> M+1, 469.2226. Anal. calcd for C<sub>27</sub>H<sub>32</sub>O<sub>7</sub>·1/4H<sub>2</sub>O: C, 68.56; H, 6.92%. Found: C, 68.71; H, 6.87%.
- 13. X-Ray crystallographic data of  $2_{11}$ : empirical formula  $C_{27}H_{32}O_7$ ; formula weight 468.21; colorless prisms; crystal dimensions  $0.30 \times 0.40 \times 0.30$  mm; triclinic; space group P1 (#2); a = 12.489(2), b = 13.727(1), c = 10.205(1) Å,  $\alpha = 105.763(4)$ ,  $\beta = 109.474(3)$ ,  $\gamma = 66.135(3)^\circ$ , V = 1489.2(3) Å<sup>3</sup>, Z = 2;  $D_{calcd} = 1.344$  g/cm<sup>3</sup>; F(000) = 630.00;  $\mu$ (MoK $\alpha$ ) = 31.83 cm<sup>-1</sup>;  $2\theta_{max} = 100.9^\circ$ ; no. of reflections measured 10729; no. of observations ( $I > 3.00\sigma(I)$ ,  $2\theta < 100.87^\circ$ ) 2542; no. of variables 352; reflection/parameter ratio was 7.22; R = 0.052;  $R_w = 0.076$ ; GOF = 1.91.
- (a) Curran, D. P. In *Comprehensive Organic Synthesis*; Semmelhack, M. F., Ed.; Pergamon: Oxford, 1991; Vol. 4, pp. 779–831; (b) Baldwin, J. K.; Thomas, R. C.; Kruse, L. I.; Silberman, L. *J. Org. Chem.* **1977**, *42*, 3846–3852.
- Nishino, H.; Hashimoto, H.; Korp, J. D.; Kurosawa, K. Bull. Chem. Soc. Jpn. 1995, 68, 1999–2009.